В алмазе увидели квантовый эффект Зенона





Древнегреческий мыслитель и математик Зенон Элейский известен своими логическими парадоксами. Один из них — Стрела Зенона — звучит следующим образом: "Летящая стрела неподвижна, так как в каждый момент времени она занимает равное себе положение, то есть покоится; поскольку она покоится в каждый момент времени, то она покоится во все моменты времени, то есть не существует момента времени, в котором стрела совершает движение".

Эта апория легла в основу описания явлений в квантовой физике. Впервые парадокс летящей стрелы был переведён на язык физики в 1977 году, когда теоретики сформулировали принцип недостижимости точного измерения квантовой системы при условии постоянных наблюдений за ней.

Данная научная догма очень хорошо соотносится с главным принципом квантовой механики —неопределённостью Гейзенберга. Это фундаментальное неравенство описывает невозможность одинаково точно определить координату и импульс частицы.

Экспериментально квантовый эффект Зенона впервые наблюдали в 1989 году в охлаждённых лазером ионах, захваченных в ловушку магнитного и электрического полей.

Сегодня физик Олифер Бензон (Oliver Benson) и его коллеги из Берлинского университета имени Гумбольдта (Humboldt-Universität zu Berlin) представили результаты своего последнего эксперимента, в ходе которого они увидели квантовый эффект Зенона в кристалле алмаза.

Напомним, что алмазы уже несколько раз были признаны идеальным материалом для конструирования квантовых компьютеров.

Исследователи работали с так называемыми азото-замещёнными вакансиями (NV-центры) — дефектными участками в кристаллической решётке алмаза, где на месте атома углерода стоит атом азота, а рядом с ним находится пустое пространство.

Чтобы изменить магнитное состояние спина электрона, расположенного в NV-центре, физики направили на него микроволновое излучение. Затем они использовали лазерный луч для того, чтобы включить красную флуоресценцию. Это должно было помочь определить, в каком состоянии находится спин электрона в каждый отдельно взятый момент.

Но на этом этапе вступил в силу квантовый эффект Зенона: как только исследователи попытались таким образом рассмотреть NV-центр, оказалось, что колебание спина между двумя состояниями было нарушено.
Упрощенная структура NV-центра (иллюстрация Zas2000/Wikimedia Commons).


"Увидеть эффект Зенона в кристаллической решётке алмаза — это лишь первый шаг. Дальше нужно будет научиться создавать квантовые логические вентили на основе алмазов", — говорит Бензон.

Квантовый аналог привычных логических вентилей устроен несколько сложнее. Информация хранится в квантовых состояниях носителей, таких как фотоны или азото-замещённые вакансии. Ранее искажающее картину воздействие окружающей среды не позволяло сохранить более несколькихкубитов (квантовых битов) информации за раз.

"Постоянное измерение состояний помогает защитить их от неконтролируемого распада и расширить объём сохраняемой информации", — поясняет Бензон.

Коллеги немецких физиков, не принимавшие участия в данной работе уверены, что алмазы действительно станут основой квантовых компьютеров в будущем. Однако они считают необходимым для начала выяснить наверняка, подчиняются ли дестабилизации колебаний спинов в NV-центрах законам квантовой механики.

О результатах своего исследования Бензон и его коллеги написали в статье, которую сегодня можно увидеть на сайте препринтов arXiv.org. Она уже принята к публикации в журнале Physical Review A, и вскоре с ней также можно будет ознакомиться в их интернет-версии.

Комментарии

Популярные сообщения